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Analytic expressions for integrals of products of spherical 
Bessel functions 
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Department of P h r i c s  and Nuclear Theory Center, Indiana University, 2401 Samp- 
son Lane, Bloomington, IN 474084768, USA 

Received 11 July 1990 

Abstract .  Integrals of several spherical Bessel fundions occur frequently in nudear 
physics. They m e  difficult to evaluate using standard numerical techniques, because 
of their slowly decreasing oscillatory form. W e  derive an analytic expression for the 
infinite integral of three spherical Bessel functions. W e  then use this result, together 
with the closure relation for spherical Bessel functions, to show how in principle one 
can  derive an analytic expression for the integral of any number of spherical Bessel 
functions. W e  demonstrate this by deriving an analytic expression for the integrd 
of four spherical Bessel functions. As with all of these analytic formulae, OUT resultr 
requirt that all angular momenta corresponding to the spherical Bessel functions can 
he coupled together to give an overall scalar quantity and consewe parity. We discuss 
the numerical accuracy and stability of this procedure. 

1. Introduction 

Evaluation of nuclear reaction amplitudes or response functions in a partial-wave rep- 
resentation leads to integrals of the form 

or to multiple integrals of similar structure. In this integral, V(r) is a nuclear in- 
teraction, and X,(Br) a bound or scattering-state radial wavefunction. The detailed 
structure of the integrals depends on the process under consideration, e.g., ampli- 
tude or response function; two-body or many-body final state; inelastic scattering, 
quasi-elastic scattering, rearrangement collision or multi-particle breakup. 

Integrals of the form (1.1) can be attacked either in configuration or momentum 
space. Convergence tends to be more rapid in momentum space, hut this advantage 
is more than counterbalanced by a serious unsolved problem: Coulomb distortions 
cannot at  present he calculated in momentum space to better than 1 to 5% precision 
a t  small momentum transfers. There are situations in which the kinematics or the 
accuracy required render this disadvantage debatable. Nevertheless, for high-precision 

t R e s e e d  supported in part hy the US National Science Foundation under contract NSF-PHY88- 
805640. 
$ Research aupported in part by the USDOE under contract DGFG2-87ER40365. 
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studies involving a wide kinematic range and a variety of observables, integrals of the 
sort considered here must be evaluated in configuration space. 

Remarkably, after some fifty years of study of nuclear reactions and the nuclear 
response, numerical evaluation of integrals of the form (1.1) is a routine exercise only 
for processes involving twc-body final states. In  this paper, we discuss techniques 
applicable to multi-particle processes. 

Suppose that the scattering states involved are expanded in a plane-wave basis: 

where j ,  is a spherical Bessel function for angular momentum 1. Integrals of the form 
(1.1) are then expressed as linear combinations of basic integrals of one of two forms: 

In equation (1.3), the factor 'e--L1r' represents a radial function with an asymptotic 
exponential falloff (which would appear in the integrals if they contain an exponential 
interaction factor V(r) or if one or more of the radial functions xr,(kir) in (1.1) were 
bound). 

Integrals of the form (1.3) or (1.4) have been extensively studied [lit. Their dif- 
ficulty stems from the presence of several rapidly oscillating factors with different 
periods. We can distinguish three different approaches for solving them: 

(a) Angular-momentum methods wherein integrals of the form (1.4) are expressed 
as finite sums over products of 3 j  and 6 j  symbols, combinatorial factors and Legendre 
functions. 

(b) Separation of integrals of the form (1.3) or (1.4) into a short-range and a 
long-range part ,  i.e. 

J, = J, + J R  

The short-range part can be evaluated by standard numerical methods. The long- 
range part can be evaluated either by contour rotation or by reduction to a linear 
combination of known functions-sine, cosine or exponential integrals. 

(c) Integration from zero to zero of the integrand, i.e. 

= a, + a, f ...+ a,, + .. . 
t References to previous work on integrals of products of Bessel functions. or to oscillatory functions 
which I d  off LYI l / r  at large r, can be found in [1-41. 
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where the {Ci} are the ordered zeros of the integrand. Convergence accelerators can 
then he applied to the resulting series. If there is an exponential factor in the  integral, 
the series { Q ~ ;  converges rapidly and convergence acceleration will usually give ten or 
more figure accuracy with no more than five to  ten terms. For integrals of the form 
(1.4), with no exponential factor, convergence is very slow (like 1/N for N terms); 
although convergence acceleration helps, the method is much less convenient than (a) 
or (b) above. 

This paper deals with Z. number of ~ p e c . b s  of the eva!ur?tion of int,egr& of the 
form (1.4), i.e. integrals of the form 

" . . I : . _  n -rll~l ._._ ~~ - ~ I ~ I . -  I L ~  ~~~~~1~ ~. .&, :~~~,  1~~~~ I. -L..,:.. . r : - L . - - - , -  
JL-LbIUII ' U, LLIIS papcr T C l a b c ' J  hue W U T K  U"I,IIIIC" UCTC b O  p'"YLu"J SL""L"J VI rcr*cgrurs 

of spherical Bessel functions. In subsequent sections of this paper we present the 
following results. 

(i) In section 3 of this paper we derive a streamlined and correct variant of a 
published angular-momentum formula for the integral of the product of three spherical 
Bessel functions. 

\", 111 DCL.LII".I 1 W r i  J 1 1 Y W  11"W I/" C*LICII" (11113 nrrgu,ar-rlr"r,r~,rrurrr L V L I L I U I ~ ,  111 pur 

ciple, to integrals of products of n spherical Bessel functions with n > 3; we give an 
explicit analytic formula for n = 4. 

(iii) We study the numerical characteristics of the angular-momentum formulae, 
checking them and assessing their efficiency by comparison with the other two ap- 
proaches (b) and (c) summarized earlier. 

/::\ 1- --n&:-- A -1- h -... 1,. -..'--A +L:- "--.. 1"- ---.._I.._ C -.-.. 1- :- ..Am 

2. Relation to previous studies 

The integral I ( A , A 2 X 3 ;  k l k 2 k 3 )  (in the notation of equation (1.7)) is the subject of 
several publications. An analytic expression for the integral of three Bessel functions 
is known [s]; however it involves ca!cu!ation of a comp!icat,ed hypergenmet,rir filnct,ion 
and is not suitable as a numerical quadrature formula [6]t. Explicit expressions of 
simpler forms have been derived in a variety of special cases. 

Sawaguri and Tobocman [7] produce an expansion in modified harmonic-oscillator 
wavefunctions. Jackson and Maximon [l] give an expression in terms of associated 
Legendre functions. Anni and Taffara [8] derive a power series expansion of this in- 
tegral, while Elbaz el a1 [Q] give an expression in terms of Legendre polynomials. A 
summary of all of these formulae is given in a review article by Elbaz [lo]. Recently, 
Davies and ceworkers [2-41 have developed numerical methods for dealing with iute- 
grals which are oscillatory and very slowly convergent (in the notation of section 1, 
they use approach (h)). 

Our formula for the integral of three spherical Bessel functions is essentially that 
of Elbaz 191. Our results differ in the limit that the three momenta { k i )  are collinear. 
In order to show how this difference arises, and to discuss the ramifications of this 
difference, we present in section 3 the derivation of our formula for the integral of three 

t The authors showed that under certain conditions the hypergeometric function of [SI simplifies and 
reduces to a finite sum. 
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spherical Bessel functions. In this section, we present some results for selected values 
of momenta and angular momenta, and we compare these with numerical results using 
approaches (b) and (c) as summarized in section 1. Stability criteriaare discussed: our 
use of the vector spherical harmonic addition theorem makes it possible to encounter 
instabilities for certain values of the momenta. We show how such problems can be 
avoided. Derivation of our result requires a fair amount of recoupling algebra. The 
details of this algebra are deferred to the appendices. 

In section 4, we show how the result for the integral of three spherical Bessel 
functions, together with the closure relation for spherical Bessel functions, can be 
used to derive an explicit formula for the integral of any number of spherical Bessel 
functions. This result is used to derive a n  analytic expression for the integral of four 
spherical Bessel functions, and our analytic formula is compared with numerical results 
for this integral. 

All the angular-momentum formulae discussed here are valid only if (1) the partial- 
wave labels { A i }  can be coupled to zero resultant angular momentum. The first 
condition amounts to demanding that the quantity to be evaluated in deriving the 
integral formula is a scalar under rotation; and (2) the partial-wave labels have an 
euen sum. The second condition arises from the condition that the amplitude conserves 
parity. Both of these conditions are satisfied for physical applications of the integrals. 

3. Analytic expression for the integral of three spherical Bessel functions 

In order to derive an analytic formula for the integral of three spherical Bessel func- 
tions, we begin with the expression for the 6-function as the integral over spacc of the 
plane wave, 

(Z~) -~ /exp[ i (h ,  + I C ,  + IC3).T]d3r = @ ( I C ,  + I C 2  + I C 3 ) .  

If the left-hand side of this expression (LHS) is expanded in spherical Bessel functions 
and spherical harmonics, we obtain 

L H S = 8  C i A x t A z t A 3 y A i .  11, (k,)Y,; A ( k 2) yA 116(b) 
A z A A  

x I ( A ,  A,A3; k , ,  k 2 ,  k3)  / d i  Y$ (i)Yi;(i)Y$ (+) 

where 

is the integral we wish to express analytically. Using the well known relation for the 
integral of three spherical harmonics, equation (3.2) can be rewritten 

(3.4) 
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where the scalar function K(Al A, A,;k l ,  k, ,  i,) is given by 

K ( A ,  A 2 A , ; i 1 , i z , i , )  = ([YA1(i1) E4 Y y i , ) p  . Y y i , ) )  (3.5) 

and 

is the Wigner 3-5 symbol [ll]. From this equation, it is clear that a necessary condition 
is that the three angular momenta { A i }  be coupled to an overall scalar, i.e. that 
/A, - A,( 5 A, 5 A, + A,. For this reason, our result for this integral exists only if 
the three angular momenta obey the triangularity condition. In addition, the sum 
A, + A, + A, must he even. The first restriction is a consequence of the conservation 
of angular momentum (the result must be a scalar under rotations), and the second 
is a consequence of parity conservation. 

From the orthogonality relations for the scalar functions IC, 

we can then derive an expression for the integral I 

Provided we can perform the integral on the right-hand side of equation (3.7), we will 
have an analytic expression for the integral of three spherical Bessel functions. 

To evaluate this integral, note that the 6-function in equation (3.7) requires that k ! ,  
k,  and k, form a closed triangle. This is geometrically possible only if the magnitudes 
satisfy 

Ik, - k2l 5 k, 5 k ,  + k 2 .  (3.8) 

If this condition is satisfied, the quantity 

lies between f l  and is the cosine of the angle between i1 and iz in the triangle formed 
by k , ,  k,  and k,. 

Provided that  the magnitudes of { k , }  satisfy equatlon (3.8), we may write 
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k (fm-' 1 

Figure 1. Theintegral I(X1A2X3;k1kzk3) of equation (3.3),in fm3 for kl = 1 fm-' 
and kz = 1.5 fm-I as a function of k 3 .  With these values of kl and k2 the integrd 
vanishes for k3 < 0.5 and k3 > 2.5, and has jump discontinuities at the boundaries 
(denoted by z s ) .  Full CUTW: XI = XZ = XJ = 0 ;  broken CUT=: XI = 0 ,  XZ = XJ = 1; 
chain curve: X I  = 0, = X3 = 3. Note that (except for a phase factor as described 
in equation (3.23)) the value of the integral at the endpoints is independent of the 
angular momenta, for fixed values of the momenta. 
~. 

where I s cos(k,, k z ) t .  

expression for the integral, equation (3.3), in the form of a Legendre series in A 
Substitution from equation (3.10) in equation (3.7) will be shown to yield an 

'(x1x2x3; k L k Z k 3 )  = CAIPI(A) (3.11) 
I 

valid only if IAI 5 1, i.e. if k3 lies within the range of equation (3.8). 
The integral in equation (3.11) is found by numerical quadrature to vanish iden- 

tically if k3 lies outside the range of equation (3.8); at the endpoints of the allowed 
interval, where I C , ,  k, and le3 are collinear, the integral has a value given by the aver- 
age of its left- and right-hand limits. These properties are illustrated in figures 1-3. 
The Legendre series in equation (3.11): however, is a continuous function of A for all 
real A. Equation (3.11) as it stands cannot be true for /AI > 1 .  Outside the allowed 
range of equation (3.8), the Legendre series must be cut-off and an additional factor 
of inserted for IAI = 1. This may be accomplished by setting 

where 

p(A) = 8(1- A)8(1 + A )  (3.13) 

t Equation (3.10) is valid for k~ # 0. Methods appropriate when k3 is small (or zero) are discussed 
at the end of section 3. 
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and cP(y) is the modified step function 

B(y) = 0  y <  0 

- L  - 2  y = o  

= 1  y > o .  

1441 

( 3 . 1 4 )  

The coefficients A, can now be evaluated for the geometrically allowed interval -1 5 
A _< 1. The closure relation for the Legendre polynomials, 

(3.15) 
1 

6 ( 2 + A )  = - C ( - l ) 1 ( 2 1 + 1 ) P l ( ~ ) P l ( A )  
2 1  

can be rewritten, with the aid of the spherical-harmonic addition theorem, in the form 

6(2  + A )  = 2a C ( - l ) '  P l ( A ) ( Y 1 ( i l ) .  Yl(.&.J) (3.16) 
I 

and substituted in equation (3.10). The result is 

2?r 
h3(k1 + kz + k3) = ~ 6( i3 ,  - ( k l T k z ) )  x ( - l ) l P l ( A ) ( Y 1 ( f c l ) .  Y'(&)). (3.17) 

'1 ' 2  '3 I 

Figure 2. Same notation as figure 1. Full curve: A 1  = A? = A 3  = 2; broken curve: 
XI = A2 = XJ = 6. 
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Substituting equation (3.17) into equation (3.7) gives, including the factor p(A) 
from equation (3.12), 

[RHS of (3.7)] = - 2np(A) z ( - l ) f P l ( A ) / d k l d k 2 ( Y r ( k l ) . Y f ( & 2 ) )  
k1k2k3 I 

. K ( &  &A3;L1,k2,-(k1Tk2)) (3.18) 

valid for all real A. In equation (3.18) we have used the fact that IC is a scalar 
product (see equation (3.5)) and hence K is real. To evaluate equation (3.18), we use 
the solid-harmonic addition theorem [12] 

if r = a + b  

(3.20) 

Substituting equation (3.20) into equation (3.18) and recoupling gives us our final 
analytic result. The recoupling and reduction are given in the appendices; after this 
algebra, we obtain 

(3.21) 

where the 6-J symbol is defined in (A.2). 
Equation (3.21) is valid now for all real A,  including values outside the limited 

range -1 5 A 5 1, with correct account taken of the jump discontinuities a t  A = *I. 
The additional factor p(A) is present in the equation of Jackson and Maximon [l], but 
is absent in the formulae of Anni and Taffara [E] and Elbaz el o l  [9]. In our discussion 
we will demonstrate that this factor is necessary to give the correct numerical results 
for all values of the momenta. An easy way to demonstrate the correctness of our 
formula is to apply it to the case A ,  = A, = A, = 0. In this case the spherical Bessel 
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functions are just sine functions, and 

I (000;k  k k ) -  - ' 
-k ,k,k,  

sin(klr) sin(k,r) sin(k3r)- d r  
r 

A 

4k1k2k3 

R =- 
8k1k2k3 

for Ik1 - k2l < k, < k1 + k2 

for k3 = k, + k, or k, = Ik, - k21 

-- - 
(3.22) 

= o  otherwise 

These integrals can he found in standard integral tablest; they agree with the results 
in equation (3.21) but not those of Elbaz el  a1 nor those of Anni et  al in the collinear 
limits, i.e. for k, = k, + k,, or k, = lkl - k21. In figure 1, the full curve represents 
the integral of equation (3.22) with k, = 1 fm-I and k, = 1.5 fm-' as a function of 
k3. The jump discontinuities a t  the endpoints are apparent. 

1,(fm3) 

I 
I 
I 

I I 

Figure 3. Same notation as figure 1. Full curve: AI = 3, A? = 2. .\a = 1; broken 
curve: XI = 7, A? = 6, A3 = 5 .  

In fact, the magnitude of the integral (3.3), at the limits of the allowed range of 
values of k,, is independent of (A,, A,, A,), 

t See, e.g., equation (3.763.2) of (131 
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as k, -+ k, + k,  from below. 
At the endpoints, the limits are to be multiplied by the usual factor f .  In figures 

1-3 we plot results for I(X,,X,, A,; k , k z k 3 )  for a variety of values of A, ,  A,, A, (with 
k ,  = 1 fm-' and k,  = 1.5 fm-'). I t  is clear that  the value of the integral at  the 
endpoints is independent of the angular momenta except for the phase factors in 
equation (3.23). The integrals oscillate more and more rapidly near the endpoints as 
the angular momenta A,, X,,X, increase. 

!! is Straightfo~ward to show from (3.21) ?h.t for . con.?.n? 

1 
I (A ,X,X3;  (uk,), (ah,), (ale,)) = - I ( X  1 A 2 X 31 ' k 1, k 29 k 3 ) ' (3.24) 

Equation (3.24) is known as the 'scaling formula' [2]. Table 1 shows some results for 
selected k and A values, compared with results evaluated numerically, using approach 
(c) as outlined in section 1 of this paper. Note that because of the scaling formula, 
we could always choose one of the k values to be 1 and then rescale our answer using 
equation (3.24). 

Table 1. The integral over 3 spherical Bessel functions evaluated analytically, equb 
tion (3.21), and numerically, using approach (c) of section 1, at selected k and X 
...,~~ ~~ 

"_U_. 

ki kz h XI Xz A3 Analytical result Numerical result 

1 .O 
1 .o 
1.0 

1 .O 
1 .O 
1 .o 
1.0 
1.0 
1.0 
1 .O 

. n  I." 

2.0 
2.0 
2.0 

2.0 
5.0 
5.0 
1.05 
1.05 
1.02 
1.02 

* n  1." 

1.5 
1.5 
1.5 

1.5 
5.5 
5.5 
0.06 
0.06 
0.03 
om 

. -  
1.0 

0 0 0 
0 1 1 
1 1 0 
3 2 
4 4 4 
0 0 0 
4 4 4 
0 0 0 
4 4 4 
0 0 0 

4 4 4 

0.2617993877991 
0.2290744643243 
0.1799870791119 

-0.0456849264425 
0.0285599332145 

-0.0080238752371 
12.46663751425 
-1.511653806929 
25.6666066469754 

-10.9755226231663 

" . . o o * r n n r r . n  
".ll'o, L l * l i l " * l i .  

0.2617993877992 
U.2290744643243 
0.1799870791119 
n I l " D - c l . - l l n  
" . L l ' O , * S l i W S l i l  

-0.0456849264425 
0.0285599332145 

-0.0080238752369 
12.46663751425 
- 1.51 1653808097 
25.6666066469758 

-10.9755226591813 

It  is evident from the definition of the integral I in equation (3.3) that the value 
of the integral is invariant under pairwise permutation of any of the ks (together 
with permutation of the corresponding As). However, equation (3.21) is not obviously 
symmetric under permutation of momenta, or angular momenta. Is there some 'pre- 
ferred' order of the momenta or angular momenta which will simplify the evaluation 
of equation (3.21)? The angular momentum sums on the right-hand side of equation 
(3.21) will contain the fewest terms if A, is chosen as the smallest of the three angular 
momenta. 

There is one exception to the general rule that X 3  should be chosen as the smallest 
of the angular momenta. This occurs because the formula of equation (3.21) becomes 
numerically unstable in the limit where the momentum k3 becomes much smaller than 
the other two momenta. This can be seen from the last four entries in table 1. In these 
cases the value k,  is much smaller than k, and k,. For these values there is a slight 
discrepancy between the analytic and numerical results; this discrepancy increases as 
k, decreases. 
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The origin of the instability is in the solid-harmonic addition theorem, equation 
(3.19), which produces an expression for solid harmonics of T in terms of those for a 
and 6, where r E a + 6. For very small values of r (relative to a and 6) and for 1 # 0,  
the left-hand side of equation (3.19) is very small while every term on the right-hand 
side is much larger. The final answer is obtained by almost complete cancellation of 
the large terms. This produces a loss of precision, and is a well known problem in any 
coupling scheme which involves use of the solid-harmonic addition theorem [14]. 

Table 2. Effect of permuting the kson theintermediate results ofequation (3.21), for 
Xx = A2 = XJ = 4. If k3 is the smallest of the ks, them can be a tremendous 
cancellation between the intermediate results. 

kl kz kS Intermediate result Final reeult 

i.0 i.05 0.06 9568%,.is2@503 
-2908695.703668 
-1113452.336823 

2403452.790684 
3562274.570624 
370821.3301599 

-3206637.013293 
-1??7'.a? .?n??4a 

1163116.899949 -1 .51  1653806929 
0.06 1.0 1.05 -0.CQ00204229484 

0.0010450443734 
-0.0008826159844 

0.0434864286739 
-0.0191557236181 
-0.0054008143549 

0.2902901810629 
-0.245171 1067769 
-1.575844784825 -1.51 1653808097 

Table 2 shows the problems which arise when I C ,  is much smaller than IC, and 
k2, The intermediate resc!ts .re displayed a!ong with the !ha! resu!t. !t is evident 
that  the first six significant figures cancel in giving the final result. The solution to 
this problem is quite simple; if the momenta are permuted so that IC, becomes the 
first argument (with corresponding permutation of the angular momenta), then the 
resulting sum is extremely stable and there is no strong cancellation, as is shown in 
the second half of table 2. 

~~~ As a rule of thumb, whenever le, is mare than an order of magnitude smaller than 
ICl and IC,, it is best to permute the momenta so that the smallest momentum is the 
first, or second, argument in equation (3.21). For all other cases, setting A, as the 
smallest of the angular momenta will optimize the sums carried out in equation (3.21). 

Our result differs from that of Jackson and Maximon [2] as we use a different 
method for recoupling angular momenta. While we use the solid-harmonic addition 
theorem to express the spherical harmonics of one vector in terms of the other two 
vectors, Jackson and Maximon choose one of the three vectors as the z-axis and define 
the 2-2 plane by a second. Their final result is thus given in terms of associated 
Legendre functions. It is interesting to note that, since they avoid using the solid- 
harmonic addition theorem, Jackson and Maximon also avoid the possibility of strong 
cancellations whenever k, is very small. 
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4. Analytic expression for the integral of any number of spherical Bessel 
functions 

'In this section we show how the results of the previous section can be used to obtain 
an analytic result (in principle) for the integral of any number of spherical Bessel 
functions. To do this we employ a recursive procedure and make use of the spherical 
Bessel function closure relation 

m 
6(r-r ' )= El 1T k2dkjL(kr) jL(kr ' ) .  

Note that equation (4.1) is true for any value of the angular momentum L. 

functions, i.e. 
Let us show how this works in the case of the integral over four spherical Bessel 

.m 

Inserting the spherical Bessel function closure relation into equation (4.2) gives 

m 

= 2 1  k 2 d k l ( I , L I , ; k l k k , ) l ( I , L I , ; k 3 k k , )  
1T 

Inserting the analytic form for the integral of three spherical Bessel functions (equation 
(3.21)) into equation (4.3) straightforwardly gives 

. .  

. (i f 6 )  (; ; ) { A 1  L I A, - L  L' I' A, -L' L l  
J ( k ,  k, k, k,; LL' I I ' )  

' ( k?k," 
(4.4) 

Note that in equation (4.4), the left-hand side is independent of L. Consequently, this 
equation can be evaluated for any value of L, provided that it satisfies certain limits, 
i.e. IA ,  - A,[ 5 L 5 A, + Az,  IX, - X,I 5 L 5 A, +A, ,  and that both A, + A ,  + L 
and A, + A, + L are even. These limitations insure that the matrix element must 
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be invariant under rotations, and that it satisfies parity conservation. Choosing L to 
have the smallest possible value minimizes the number of terms in equation (4.4). 

In equation (4.4), all sums over angular momenta are finite. In this equation, the 
quantity J(k,  k2 k, k,; LL' l l ' )  is the integral over k in equation (4.3), defined by 

J(klk2k3k4;LL'll') = dk@(A,)@(A3)kL+"Pl(Al) P,,(A3). (4.5) l 
In equation (4.5), the quantities A, and A3 are defined by 

k2 + k: - k; 
2kk, 

A, = 

k2 + kg - k j  
Zkk, A3 = 

and the boundary function @(z) is defined in equation (3.13). The function PI(.) 
in equation (4.5) is the Legendre polynomial of order I and argument 2. Remember 
that the boundary function D(z)  vanishes if 121 > 1. Thus, for example the factor 
P(A,) restricts the k-integration to values for which A, lies in the physical range 
-1 5 A, 5 1 of the Legendre polynomials. 

We can show that the boundary function @(A,) restricts the values of k in the 
integral of equation (4.5) to 

Ik2 - k,I 5 k 5 k, + k,. (4.7) 

Similarly, the boundary function @(A,) restricts k to the interval 

Ik4 - k31 5 k 5 k, + k4. (4.8) 

For the purposes of this integral, we may replace the modified step-functions in equa- 
tion (3.13) by unmodified @-functions. This is because we are interested in the area 
under this integral, and the fact that the modified 0 functions are discontinuous at 
one point makes no change in the area. It is then straightforward to show that the 
limits of integration in equation (4.5) are IC- to IC+,  where 

IC- ~ M a x ( l k 2 - k l l , ~ k q - k 3 1 )  

IC, = Min(k, + k,, k, + k4). 
(4.9) 

The integral (4.5) vanishes unless IC, > I C - .  This condition would be violated only 
if the largest of the {ki} were larger than the sum of the other three; this is related 
to the requirement that the four vectors {ki] in equation (4.2) satisfy the 6-function 
condition. 

To evaluate the integral of equation (4.5), we expand the Legendre polynomials in 
power series in terms of the argument. Thus we use [15] 

(4.10) 
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Table 3. The integal over four spherical Bessel functions evduated analytically, 
equation (4.4), and numerically, using approach ( c )  of section 1, at selected k and X 
V a l U e i .  

kl kz k3 k, XI Xz XJ X, Analytic$ result Numerical result 

1.0 1.0 1.0 1.0 0 0 0 0 0.785398163397 0.785398163398 
1.0 1.0 1.0 1.0 0 5 2 3 0.003399992049 0.003399992049 
1.0 1.0 1.0 1.0 4 4 4 4 0.153850922281 0.153850922281 
1.0 2.0 2.0 3.0 0 0 0 0 0.065449846950 0.065449846950 
1.0 2.0 2.0 3.0 0 5 2 3 0.004685892785 0.004685892785 
1.0 2.0 2.0 3.0 4 4 4 4 0.001317986071 0.001317986071 

where 
(-1y (2I - ZS)! 

4 = Z's!(/ - s)!(/ - 2s)! 

and 
E(I/2)  = Integer part of (1/2) 

(4.11) 

= //2 for even 1 (4.12) 

= ( I  - 1)/2 for odd I 

Next we expand the arguments of the Legendre polynomials in equation (4.5) in terms 
of the integration variable k.  Thus for example 

(4.13) 

inserting equation (4.i:) into equation (4.iG) and using the binomiai theorem gives 
1-28 1-2s 

( I  L2') (&) ' k2"+'*-' . (4.14) A:-2' = (T) k: - k; 

p = 0  

This is a sum of even (odd) powers of k (when (I - 2s) is even (odd)) going from k2"-' 
to  

With the analogous expansion for A3, equation (4.5) becomes 

. ~ r c + r c ' + 2 p t 2 " + 2 s t 2 t - l - l ~  (4.15) 

where the value of the k-integral in equation (4.16) is given by 

(4.16) 

This is certainly the case unless the exponent a in  equation (4.16) is -1 (in which case 
the integral is logarithmic). However, from the triangular conditions on the angular 
momenta in equation (4.4), one can deduce that L + L' + 2p + 2u + 2s + 2t - I - 1' is 
always even. 
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Equations (4.4) and (4.15) give the analytic form for the integral of four spherical 
Bessel functions. In table 3 we compare our analytic results with numerical results for 
the same integrals. As can be seen we obtain at  least seven-place accuracy with our 
sums. We have not found any regions of instability for our analytic result. However, 
these equations require sums over a large number of intermediate variables (eight). 
Such sums are extremely time-consuming; the computer time required increases expo- 
nentially as the angular momenta increase. For large values of the angular momenta in 
these integrals, i t  is conskierably faster t o  evaluate equation (4.5) numerically. Since 
the integrals are finite they can be performed rapidly and accurately using Gauss- 
Legendre quadrature. 

5. Conclusions 

Integrals involving products of several spherical Bessel functions occur in many scat- 
tering problems in nuclear physics. For problems with a single continuum particle 
in both initial and final states, integrals involving three spherical Bessel functions 
are common. Such integrals are extremely difficult to evaluate numerically because 
of their poor convergence and oscillatory nature. For such problems several analytic 
expressions have been derived. For problems involving more particles (e.g. problems 
with one incident and two final-state continuum particles) one can encounter larger 
numbers of spherical Bessel functions. Knockout reactions such as (e,e'p), (r ,2r) ,  or 
(p, p'r) are often studied in nuclear physics and amplitudes for such processes may be 
evaluated by methods described in this paper. 

We showed how an analytic expression for the integral of three spherical Bessel 
functions can be extended, using the closure relation for spherical Bessel functions, 
to produce an expression for the integral of any number of spherical Bessel functions. 
In section 4 we derived such an equation for four spherical Bessel functions (equation 
(4.4)). It involves a finite integral over intermediate momenta (for the product of n 
spherical Bessel functions'one has to perform n - 3 finite integrals). 

The resulting integrals can be evaluated analytically by making power series ex- 
pansions of the resulting Legendre functions. This is carried ou t  for the integral of 
four spherical Bessel functions, and the analytic expression is given in equation (4.15). 
This expression is accurate and stable. However, even for small values of the angular 
momenta i t  involves lengthy computation due to the large number of sums to evalu- 
ate. For larger values of the angular momenta it is considerably faster to perform the 
integral (4.5) numerically. 

We have not calculated integrals with more than  four spherical Bessel functions. 
Although we could extend the methods outlined here, we know of no pressing physics 
questions which require these integrals. Furthermore, the number of sums in the 
resulting analytic expression will increase very rapidly with the number of Bessel 
functions. Finally, since j,(x) - sin(x - I r / 2 ) / x  for large x, integrals which contain 
large numbers of Bessel functions will exhibit much better convergence properties for 
large z and hence should be amenable to the numerical methods outlined in section 1. 
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Appendix A. Summary of essential formulae involving angular momentum 
and spherical harmonics 

States of angular momentum k and spherical tensors of rank k are, by definition, sets 
of 2k+ 1 objects that  transform under rotations like the spherical harmonics Y:. The 
symbol [@I is used to indicate coupling of such objects to definite resultant angular 
momentum or rank, e.g. 

Recoupling of three angular momenta involves the 6 j  symbols defined by 

( A 4  
1' k 

x [ A ' @ [ B ; @ C  I 1,. 
Recoupling of four angular momenta to zero resultant also involves a 6 j  symbol 

(a degenerate 9j  symbol) defined by 

The product coupled to zero resultant [ @ I :  in equation (A.3) is related to the conven- 
tional scalar product by 

(A' * Bk) = ( - 1 ) k ( 2 k  + 1): [Ak @ E k ] : .  (A.4) 

The phase and normalization of the spherical harmonics are defined by 

I* - - Y,  (k) - (-1)'"Y:,,,(i) 

]Y:( i )Y,$( i )di  = 6&,,,,,,. 

Other useful properties include 

1 1 -  Y L ( - i )  = ( - 1 )  Y,(k) 

Y,"(k) = Jr7;i;; 
and the basic coupling theorem 
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From equations (A.5) and (A.6) it follows that 

The central result in our derivations of integrals of products of Bessel functions is 
the identity derived from equation (A.3) and the coupling theorem (A.7) for the zero- 
coupled product of four spherical harmonics of two independent unit vectors k , ,  k , .  
This identity is 

[[Yll(kl) @ Y V 2 ) ] A  @ [Yl:(k,)@Y':(k2)]x]; 
1 I . . , I  , , I  1 ,  .,._ = - ( - 1 y i ~ ~ ~ ~ - ~ ( ~ , ,  + ijtjj, + ijjaii + iji2v2 + ijj+ 

4rr 

x CK2A + I ) (%+ 1)1* 
c 

When X = 0 this reduces to 

P 

(A.lO) 1 I' p 

Appendix  B. Evaluation of the angular  integral  in equation (3.18) 

The integral to be evaluated is 

J = ! f(k,, E , )  dk, dk, (B.1)  

where f(kl,k2) also depends on I ,  A,, A,, and A, : 

f ( k l , k z )  = ( Y i ( ~ ~ j . ~ ~ i ( k z ) ) ~ ~ ~ ( A l A 2 ~ ~ ; k l  k ,  - ( k , T k , ) )  ( B 4  

and the real scalar function IC is defined in equation (3.5). As a scalar function of 
k , ,  k,, f can be expanded in the form 

Given the expansion coefficients C,, the angular integrations can be carried out using 
equation (A.8) of appendix A. The result is 

J =4sC,,. (B.4)  
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To evaluate the desired integral we need only determine the r = 0 coefficient in the 
expansion (B.3). 

From the 
definition (3.5), using (A.4), (A.6) and the solid-harmonic expansion (3.19) 

First apply the recoupling identity (A.9) to the scalar function IC. 

IC = [ A 3 ] q Y y L l )  @ Y y L z ) p  @ Y"(k,Tk2)]; 

A. 

= c ( I , [ [ Y y L l )  @ Y y L 2 ) p  @ [Y+-L(L,) @YL(i2)]"]: 
L=O 

03.5) 

where 

Using the identity for binomial coefficients 

2 ( A , - L ) + l  2A3+1 rA3) 2L 
("A;; 1) = 

we obtain 

Using equation (A.9), the product of four spherical harmonics in equation (B.5) re- 
duces to 

with 

[(2A1 + 1)(2Az + 1)(2A3 + 1)(2A3 - 2L + 1)(2L + l)(Zs + 1)1? 

(B.lO) 47T OS' e 

hence 

r f i  i \ - f - l l ' f 9 r L  1 \ ?  FT,. R 
J \ ~ l , ~ Z J - \ ~ ' I ~ * ' T ' I - L L U L r s r .  

L S  

where we have used equation (A.4). 

be reduced using equation (A.10) of appendix A .  The result is 
The zerocoupled product of four spherical harmonics in equation (B. l l )  can now 

(B.12) 
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This is an expansion of the form (B.3). Only the r = 0 coefficient is needed. In this 
case 

= (21 + l)(2s + 1 ) ~ -  4, 2 = (21 + l)?S,, 
(21 + 1) 

(B.13) 

Therefore (see equation (B.3)) 

(B.14) 

where ctL and p,, are given by equations (B.8) and (B.lO). Substitution into equation 
(8.4) yields the desired expression for the angular integral (B.1); 

(B.15) 

Substitution from equation (B.15) in (3.18), followed by use of equations (3.7) and 
(3.12) yields the final expression (3.21) for the integral of a product of three spherical 
Bessel functions. 
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